Measurement Group

Scopemon is configured via parameters. This reference lists all available parameters, default values, allowed values, and use examples for the measurement.

Table of Contents

1. General	
1.1. measurement_description	4
1.2. measurement_start_offset	4
1.3. reconnect_interval	4
1.4. robust_mode_max_cbd	5
1.5. user_id	5
2. Topology	5
2.1. primary_probe_hostname	5
2.2. primary_probe_port	6
2.3. use_secondary_probe	6
2.4. secondary_probe_hostname	
2.5. secondary_probe_port	
2.6. primary_probe_placement	
2.7. primary_probe_interface_index	
2.8. secondary_probe_interface_index	
2.9. secondary_probe_placement	
2.10. nat_between_probes	
3. Filtering	
3.1. packet_filter_mode	
3.2. packet_filter	
4. Senders	
4.1. primary_probe_senders_pure_mac_method_enabled	
4.2. primary_probe_senders_eth_mode	
4.3. primary_probe_senders_eth_address_list	
4.4. primary_probe_senders_ipv4_mode	
4.5. primary_probe_senders_ipv4_address_list	
4.6. primary_probe_senders_ipv6_mode	
4.7. primary_probe_senders_ipv6_address_list	
4.8. secondary_probe_senders_pure_mac_method_enabled	
4.9. secondary_probe_senders_eth_mode	
4.10. secondary_probe_senders_eth_address_list	
4.11. secondary_probe_senders_ipv4_mode	13
4.12. secondary_probe_senders_ipv4_address_list	14
4.13. secondary_probe_senders_ipv6_mode	
4.14. secondary_probe_senders_ipv6_address_list	15
5. Measurement Details	15
5.1. averaging_interval	15
5.2. packet_id_method	15
5.3. packet_loss_timer	16
5.4. pk_delay_threshold	
5.5. pk_jitter_threshold	17
5.6. use_promiscuous_mode	17
6. QoE Averaging	17
6.1. use_qoe_swa	
6.2. use_qoe_wma	
6.3. qoe_swa_window_size	
6.4. qoe_wma_weight_newest	

7. Results	19
7.1. get_secondary_probe_average_results	19
7.2. use_results_distribution	
7.3. results_distribution_destinations	19
7.4. write_absolute_results	
7.5. write_average_results	20
7.6. write_date_code_format	
7.7. write_filename_suffix	
7.8. write_flow_results	21
7.9. write_multiple_files	21
7.10. write_packet_results	
7.11. write_path	
8. Glossary	

1. General

1.1. measurement_description

Verbose description of the measurement. This value is written to results files as metadata.

Type: stringDefault: [empty]

Example

To name this measurement "My measurement", define this parameter as:

```
[Measurement]
measurement_description=My measurement
```

1.2. measurement_start_offset

Artificially delay the start of the measurement by the given time. If the value is 0, the measurement starts as soon as possible once triggered.

Unit: millisecondsPrecision: integerMinimum: 0

Default: 0

Example

To delay the start of the measurement by 1 second, define this parameter as:

```
[Measurement]
measurement_start_offset=1000
```


This feature is used in particular scenarios and is rarely needed

1.3. reconnect_interval

If a connection cannot be established to the primary Probe, Scopemon waits for a duration specified by this parameter and then attempts to reconnect.

Unit: millisecondsPrecision: integer

Minimum: 0Default: 1000

Example

To attempt a reconnection after 500 milliseconds, define this parameter as:

[Measurement]
reconnect_interval=500

1.4. robust_mode_max_cbd

This parameter defines the maximum connection break duration allowed in the QMCP connections related to the measurement session. If a connection break is longer than the defined value, the measurement session will end to a timeout error.

Unit: minutesPrecision: integer

Minimum: 1Default: 10

Example

To allow connection breaks of maximum of three minutes, define this parameter as:

[Measurement]
robust_mode_max_cbd=3

1.5. user id

User ID can be used to identify a controller, i.e., the Qosium Scopemon instance in this case. You can set this freely. The set value will appear in the results, where it can be used as a parameter to find results. Thus, you can use this as you wish as an identifier for your measurement, devices, etc., in a large-scale measurement setup.

Precision: integer

■ Minimum: 0

Maximum: 4294967295

Default: 0

Example

To set an id of 6 for this client, define this parameter as:

[Measurement]
user_id=6

2. Topology

2.1. primary_probe_hostname

The hostname (or directly the IPv4 address) of the primary Probe. This can be omitted if the Probe is located on the same device where Scopemon is used.

Type: string

■ Default: 127.0.0.1

Example

If the primary Probe is installed in another device at myhost.home, define this parameter as:

```
[Measurement]
primary_probe_hostname=myhost.home
```

2.2. primary_probe_port

The port number of the primary Probe. This can be typically omitted unless the port where Probe serves control connections has been changed in Probe configuration.

Precision: integer

Minimum: 0

Maximum: 65535Default: 8177

Example

If Probe is configured to serve control connections on port 9776, define this parameter as:

```
[Measurement]
primary_probe_port=9776
```

2.3. use_secondary_probe

By default, measurement is performed with one Probe. With this setting, it's possible to set a two-point measurement.

- Values:
 - true Perform a two-point measurement
 - false Perform a single-point measurement
- Default: false

Example

To perform a two-point measurement using the Probe at 192.168.1.14 and interface #4, set as follows:

```
[Measurement]
use_secondary_probe=false
secondary_probe_hostname=192.168.1.14
secondary_probe_interface_index=4
```

ignored. If secondary Probe is not used, i.e., the measurement is a single-point one, all the secondary Probe parameters are just ignored.

Single-point measurement significantly limits the number of available measurement result types.

2.4. secondary_probe_hostname

The hostname (or directly the IPv4 address) of the secondary Probe.

Type: string

Default: 127.0.0.1

Example

If a secondary Probe is installed in another device at IP address 192.168.1.43, define this parameter as:

[Measurement]
secondary_probe_hostname=192.168.1.43

This parameter has no effect when the secondary Probe is disabled

2.5. secondary_probe_port

The port number of the secondary Probe. This can be typically omitted unless the port where Probe serves control connections has been changed in Probe configuration.

Precision: integer

■ Minimum: 0

Maximum: 65535Default: 8177

Example

If Probe is configured to serve control connections on port 9778, define this parameter as:

[Measurement]
secondary_probe_port=9778

This parameter has no effect when the secondary Probe is disabled

2.6. primary_probe_placement

The topological placement of the primary Probe.

- Values:
 - 10 Measurement end-point Probe is in either one of the endpoints of the measured traffic. In other words, the device Probe is installed to is either sending or receiving the measured network traffic.
 - 100 Within measured path Probe is not located at either one of the end-points but instead resides somewhere along the path where the measured traffic traverses.
 - 200 Off-path Probe is not located within the measurement path at all. This is the case, e.g., when the Probe is located in a separate device where the traffic to be measured is mirrored.
- Default: 10

2.7. primary_probe_interface_index

This parameter defines the capture interface of the primary Probe to be used in the measurement. The interface numbering in a device is unique per Qosium installation. Thus, once Qosium Probe is installed on a device, a particular NIC will always have the same interface index. The numbering can change if Qosium

Probe is removed and reinstalled.

Precision: integer

Minimum: 0Default: 0

Example

If desired the capture interface has index of 2, define this parameter as:

[Measurement]
primary_probe_interface_index=2

To see the available interfaces and their indices start Scopemon and check its log.

2.8. secondary_probe_interface_index

This parameter defines the capture interface of the secondary Probe to be used in the measurement.

Precision: integer

Minimum: 0Default: 0

Example

If the index of the desired capture interface is 2, define this parameter as:

[Measurement]
secondary_probe_interface_index=2

This parameter has no effect when the secondary Probe is disabled

2.9. secondary_probe_placement

The topological placement of the secondary Probe.

- Values:
 - 10 Measurement end-point Probe is in either one of the endpoints of the measured traffic. In other words, the device Probe is installed to is either sending or receiving the measured network traffic
 - 100 Within measured path Probe is not located at either one of the end-points but instead resides somewhere along the path where the measured traffic traverses
 - 200 Off-path Probe is not located within the measurement path at all. This is the case, e.g., when the Probe is located in a separate device where the traffic to be measured is mirrored.
- Default: 10

This parameter has no effect when the secondary Probe is disabled

2.10. nat_between_probes

Qosium needs to be aware if a NAT occurs between Probes. If this is the case, enable this parameter.

- Values:
 - true There's a NAT occurring between Probes
 - false No NAT is occurring between Probes
- Default: false

This parameter has no effect when the secondary Probe is disabled

3. Filtering

Packet filter is one of the most important parameters, as it defines which traffic is measured. The packet filter needs to be strict enough so that no irrelevant traffic is captured. Otherwise, the results may not be useful.

3.1. packet_filter_mode

This parameter determines the mode in which packets are filtered. In most cases, the selection is between *Automatic*, which generates an automatic filter, or *Manual*, which allows the use of a manual filter defined in <u>packet_filter</u>. For more information, see <u>Packet Filters in Qosium</u>.

- Values:
 - 220 Manual Packet filter is defined manually in <u>packet_filter</u>. In a two-point measurement, this filter is used in the secondary Probe as well.
 - 240 Automatic Generates automatically a filter, which includes all IP traffic between the hosts (a two-point measurement) or the measurement point's own IP traffic (a single-point measurement). The parameter packet_filter will be ignored.
 - 231 Automatic for secondary (strict) This mode is meant for cases where a NAT is between the measurement points in a two-point measurement. The filter is set manually for the primary Probe, but Qosium generates an automatic filter for the secondary Probe. The generated filter will be strict, focusing on a single flow, so define the primary Probe filter to be strict as well.
 - 233 Automatic for secondary (light) This mode is similar to the previous, but now a <u>loose</u> automatic filter is generated for the secondary Probe. A *loose filter* includes only addresses, so all traffic traveling between these addresses will be included. Remember to define the primary Probe's manual filter to be loose as well.
- Default: 240

Example

[Measurement]
packet_filter_mode=231

Only end-point placements of Probes allow the Packet filter to be calculated automatically.

3.2. packet_filter

When <u>packet_filter_mode</u> is Manual, use this parameter to define the filter. In addition, when using the *NAT* automatic filtering modes, the primary Probe filter is defined here.

Type: stringDefault: ip

For more information, see Packet Filters in Qosium.

Example

To enable monitoring only for UDP traffic going through ports 6889 or 6890, define this parameter as:

[Measurement]
packet_filter=udp port 6889 or udp port 6890

If you are running Scopemon in Flow Monitor Measurer mode, the manual filter defined here will be overruled by the filter defined under FlowMonitorMeasurer.

4. Senders

Sometimes it is not clear which way the traffic is traveling in the network. In these cases, you need to tell it to Qosium by defining senders manually. See <u>Direction of Traffic and Senders</u> under concepts section for more information what the senders mean.

In a single-point measurement, you need to define the senders manually if Probe's placement is Off-path.

In a two-point measurement, you need to define the senders manually in the following cases:

- If both Probes are *Off-path*, you need to define senders for both manually.
- If one Probe is *Off-path* and the other is *Within path*, you need to define the senders manually for the *Off-path* Probe.

Otherwise, Qosium defines the senders automatically, and the following parameters in this category are ignored.

4.1. primary_probe_senders_pure_mac_method_enabled

Determines whether the pure MAC method is used for defining primary Probe senders. When enabled, the senders are defined only based on MAC addresses and no other senders settings are required for the primary Probe.

- Values:
 - true Pure MAC method is used
 - false Pure MAC method is not used
- Default: false

This mode works only if the measured traffic contains Ethernet-like MAC addresses.

4.2. primary_probe_senders_eth_mode

The Ethernet senders mode of the primary Probe.

- Values:
 - 0 Auto-search Use the Ethernet addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.
 - 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
 - 252 Mask Define the senders manually by using a mask instead of individual addresses.
- Default: 0

Example

```
[Measurement]
primary_probe_senders_eth_mode=249
```

4.3. primary_probe_senders_eth_address_list

The manual Ethernet senders list of the local Probe. Used only when <u>primary_probe_senders_eth_mode</u> is set to *manual* or *mask* mode.

Example (Manual mode)

```
[Measurement]
primary_probe_senders_eth_address_list/size=2
primary_probe_senders_eth_address_list/1/address=12:34:56:78:9a:bc
primary_probe_senders_eth_address_list/2/address=12:34:56:78:9a:bd
```

4.4. primary_probe_senders_ipv4_mode

The IPv4 senders mode of the primary Probe.

- Values:
 - 0 Auto-search Use the IPv4 addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.
 - 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
 - 252 Mask Define the senders manually by using a network mask instead of individual addresses.
- Default: 0

Example

```
[Measurement]
primary_probe_senders_ipv4_mode=252
```


When using the Inverse definition or Pure MAC method, the Packet filter cannot be calculated automatically.

4.5. primary_probe_senders_ipv4_address_list

The manual IPv4 senders list of the local Probe. Used only when <u>primary_probe_senders_ipv4_mode</u> is set to *Manual* or *Mask* mode.

Example (Mask mode)

```
[Measurement]
primary_probe_senders_ipv4_address_list/size=1
primary_probe_senders_ipv4_address_list/1/address=192.168.1.0
primary_probe_senders_ipv4_address_list/1/value=255.255.255.0
```

4.6. primary_probe_senders_ipv6_mode

The IPv6 senders mode of the primary Probe.

- Values:
 - 0 Auto-search Use the IPv6 addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.
 - 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
 - 252 Mask Define the senders manually by using a network mask instead of individual addresses.
- Default: 0

Example

```
[Measurement]
primary_probe_senders_ipv6_mode=249
```


When using the Inverse definition or Pure MAC method, the Packet filter cannot be calculated automatically.

4.7. primary_probe_senders_ipv6_address_list

The manual IPv6 senders list of the local Probe. Used only when <u>primary_probe_senders_ipv6_mode</u> is set to *Manual* or *Mask* mode.

Example (Manual mode)

```
[Measurement]
primary_probe_senders_ipv6_address_list/size=1
primary_probe_senders_ipv6_address_list/1/address=fe80:12ab:c839:8df9::1
```

4.8. secondary_probe_senders_pure_mac_method_enabled

Determines whether the pure MAC method is used for defining secondary Probe senders. When enabled, the senders are defined only based on MAC addresses and no other senders settings are required for the secondary Probe.

- Values:
 - true Pure MAC method is used

- false Pure MAC method is not used
- Default: false

This mode works only if the measured traffic contains Ethernet-like MAC addresses.

This parameter has no effect when the secondary Probe is disabled

4.9. secondary_probe_senders_eth_mode

The Ethernet senders mode of the secondary Probe.

- Values:
 - 0 Auto-search Use the Ethernet addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.
 - 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
 - 252 Mask Define the senders manually by using a network mask instead of individual addresses.
- Default: 250

Example

[Measurement]
secondary_probe_senders_eth_mode=252

This parameter has no effect when the secondary Probe is disabled

4.10. secondary_probe_senders_eth_address_list

The manual Ethernet senders list of the secondary Probe. Used only when <u>secondary_probe_senders_eth_mode</u> is set to *manual* or *mask*.

Example (Mask)

[Measurement]
secondary_probe_senders_eth_address_list/size=1
secondary_probe_senders_eth_address_list/1/address=12:34:56:78:9a:00
secondary_probe_senders_eth_address_list/1/value=ff:ff:ff:ff:00

This parameter has no effect when the secondary Probe is disabled

4.11. secondary_probe_senders_ipv4_mode

The IPv4 senders mode of the secondary Probe.

- Values:
 - 0 Auto-search Use the IPv4 addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.

- 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
- 252 Mask Define the senders manually by using a network mask instead of individual addresses.
- Default: 250

Example

[Measurement]
secondary_probe_senders_ipv4_mode=249

When using the Inverse definition or Pure MAC method, the Packet filter cannot be calculated automatically.

This parameter has no effect when the secondary Probe is disabled

4.12. secondary_probe_senders_ipv4_address_list

The manual IPv4 senders list of the secondary Probe. Used only when secondary_probe_senders_ipv4_mode is set to *Manual* or *Mask*.

Example (Manual)

```
[Measurement]
secondary_probe_senders_ipv4_address_list/size=3
secondary_probe_senders_ipv4_address_list/1/address=10.0.0.1
secondary_probe_senders_ipv4_address_list/2/address=10.0.0.4
secondary_probe_senders_ipv4_address_list/3/address=10.0.0.12
```


This parameter has no effect when the secondary Probe is disabled

4.13. secondary_probe_senders_ipv6_mode

The IPv6 senders mode of the secondary Probe.

- Values:
 - O Auto-search Use the IPv6 addresses of the device's interfaces as senders.
 - 249 Manual Input sender addresses manually.
 - 250 Inverse definition The senders are defined according to the senders of the secondary Probe.
 - 252 Mask Define the senders manually by using a network mask instead of individual addresses.
- Default: 250

Example

```
[Measurement]
secondary_probe_senders_ipv6_mode=252
```


When using the Inverse definition or Pure MAC method, the Packet filter cannot be calculated automatically.

This parameter has no effect when the secondary Probe is disabled

4.14. secondary_probe_senders_ipv6_address_list

The manual IPv6 senders list of the secondary Probe. Used only when secondary_probe_senders_ipv6_mode is set to Manual or Mask.

Example (Mask)

```
[Measurement]
secondary_probe_senders_ipv6_address_list/size=1
secondary_probe_senders_ipv6_address_list/1/address=fe80:1234:5678::0
secondary_probe_senders_ipv6_address_list/1/value=ffff:ffff::0
```


This parameter has no effect when the secondary Probe is disabled

5. Measurement Details

5.1. averaging_interval

Determines how often quality is measured for the ongoing measurement. Lower value gives more detailed results and consumes more resources. A higher value gives smoother values.

Unit: milliseconds
Precision: integer
Minimum: 50
Default: 1000

If you are seeking packet-level resolution for the statistics, do not try to do it by decreasing Averaging interval. Instead, consider using Packet QoS Statistics

Example

To make Scopemon collect quality results twice per second (i.e., every 500 ms), define this parameter as:

```
[Measurement]
averaging_interval=500
```

5.2. packet_id_method

This parameter defines how Probes identify packets during a measurement. The mode Automatic is the recommended one.

See Qosium Scope's Packet Identification Method for more details of this parameter.

- Values:
 - 10 Automatic Qosium selects the method from the options below based on the measurement scenario.
 - 50 IPv4 ID Field Qosium uses the *Identification field* in the IPv4 header for packet identification.

- 60 RTP Sequence Number Qosium uses the *Sequence number field* in the *RTP* header for packet identification.
- 100 Payload-Based ID Qosium calculates the identification based on the packet payload. If a packet has no payload, *IP4 ID Field*, when present, is used.
- 110 Extended Payload-Based ID Qosium calculates the identification based on the packet payload, including some parts of the transport layer header.
- 120 Pure Payload-Based ID This is a very similar method with *Payload-Based ID*, but packets without payload are just ignored from QoS calculation.
- 200 NAT bypasser + Payload based ID Operates as Payload-Based ID but with NAT bypasser functionality enabled.
- 210 NAT Bypasser + Pure Payload Based ID Operates as *Pure Payload-Based ID* but with NAT bypasser functionality enabled.
- Default: 10

Example

[Measurement]
packet_id_method=50

5.3. packet_loss_timer

This parameter defines how long to wait for a packet before considering it lost. Thus, selecting a small value may cause delayed packets to be considered lost even though they would later arrive at the destination. The Automatic setup is recommended for most use cases.

Unit: millisecondsPrecision: integer

■ Special value: 0 - Automatic

Minimum: 1Default: 0

Example

To allow packet delay up to 2 seconds, define this parameter as:

[Measurement]
packet_loss_timer=2000

Keep this at least on the same level as the Averaging Interval, unless you are using a long Averaging Interval (> 5 s)

5.4. pk_delay_threshold

Packets with a delay above this threshold are counted in QoS Statistics: Th. ex. delay pkts.

Precision: integerUnit: microseconds

Minimum: 0

■ Default: 100000

Example

To count packets that have a delay of 500 ms (500000 µs), define this parameter as:

```
[Measurement]
pk_delay_threshold=500000
```

5.5. pk_jitter_threshold

Packets with a jitter above this threshold are counted in QoS Statistics: Th. ex. jitter pkts.

Precision: integerUnit: microseconds

Minimum: 0Default: 100000

Example

To count packets that have a jitter of 100 ms (100000 µs), define this parameter as:

```
[Measurement]
pk_jitter_threshold=100000
```

5.6. use_promiscuous_mode

Promiscuous mode allows the detection of incoming traffic that is not directed to the selected network interface. This scenario is common when capturing mirrored traffic, e.g., from a switch.

- Values:
 - true Allow detection of all incoming traffic
 - false Allow detection of incoming traffic destined only for this interface
- Default: true

Example

To disable detection of traffic not designated to the network interface, define this parameter as:

```
[Measurement]
use_promiscuous_mode=false
```

6. QoE Averaging

When using QoE methods, it is recommended to use averaging because it resembles better how humans perceive connection quality.

6.1. use_qoe_swa

Enable or disable sliding window averaging (SWA) for quality estimates.

Values:

- true Enable SWA
- false Disable SWA
- Default: true

Example

```
[Measurement]
use_qoe_swa=true
```

6.2. use_qoe_wma

Enable or disable weighted moving averaging (WMA) for quality estimates.

- Values:
 - true Enable WMA
 - false Disable WMA
- Default: true

Example

```
[Measurement]
use_qoe_wma=false
```

6.3. qoe_swa_window_size

SWA window size.

Precision: Unsigned integer

Unit: Averaging samples

Minimum: 0Default: 5

Example

```
[Measurement]
qoe_swa_window_size=2
```

6.4. qoe_wma_weight_newest

- Weight of the newest sample in WMA.
- Precision: Real number

Minimum: 0.0Default: 0.5

Example

```
[Measurement]
qoe_wma_weight_newest=1.0
```

7. Results

7.1. get_secondary_probe_average_results

Determines whether single-point average statistics are gathered from the secondary Probe.

- Values:
 - true Gather average results from the secondary Probe
 - false Do not gather average results from the secondary Probe
- Default: false

This setting is relevant only when write_average_results is enabled.

7.2. use_results_distribution

Enable or disable result distribution directly from primary Probe to external result receivers.

- Values:
 - true Enable result distribution
 - false Disable result distribution
- Default: false

7.3. results_distribution_destinations

Qosium Probe can send measurement results to additional receivers during measurement. These receivers must be running the Qosium server, such as Qosium Storage.

- Type: Array
- Fields:
 - address The IPv4 address of the receiver
 - port The port number of the receiver

Example

To send Qosium results to destinations 127.0.0.1:7700 and 192.168.1.3:7710, define this parameter as:

```
[Measurement]
use_results_distribution=true
results_distribution_destinations/size=2
results_distribution_destinations/1/address=127.0.0.1
results_distribution_destinations/1/port=7700
results_distribution_destinations/2/address=192.168.1.3
results_distribution_destinations/2/port=7710
```

7.4. write_absolute_results

When true, Packet QoS measurement results are written to file. Two files are generated, and the filenames have format $pk_qosDL[suffix].txt$ and $pk_qosUL[suffix].txt$, and new measurements are appended to the files.

- Values:
 - true Results are written to files
 - false Results are not written to files
- Default: false

Example

```
[Measurement]
write_absolute_results=true
```

7.5. write_average_results

When true, average measurement results are written to file. The filename has the format "averages_[suffix].txt", and new measurements are appended to the file.

- Values:
 - true Results are written to file
 - false Results are not written to file
- Default: false

Example

```
[Measurement]
write_average_results=true
```

7.6. write_date_code_format

Date code format governs the frequency of file creation when write_multiple_files. Whenever Scopemon detects a change in the date code, it automatically triggers new result files. A timestamp with this date code is then appended to the filename.

Type: stringDefault: yyyyMMdd

Example

To write results every hour, define this parameter as:

```
[Measurement]
write_multiple_files=true
write_date_code_format=yyyyMMdd-hh
```

7.7. write_filename_suffix

File suffix string when forming a filename for measurement result files.

Type: stringDefault: Empty

Example

If defined for example as "test", filenames will begin with the suffix and underscore, e.g. averages_test.txt.

```
[Measurement]
write_average_results=true
write_filename_suffix=test
```

This settings has effect only when write_absolute_results, write_average_results, write_flow_results, and/or write_packet_results is set to true.

7.8. write_flow_results

When true, flow measurement results are written to file. The filename has the format "flows_[suffix].txt", and new measurements are appended to the file. This data only contains flow map detected during the measurement, which starts later than the actual flow. Therefore expect the reported flow duration to be shorter. Typically only one flow should be visible.

- Values:
 - true Results are written to file
 - false Results are not written to file
- Default: false

Example

```
[Measurement]
write_flow_results=true
```

7.9. write_multiple_files

When true, measurement results are written to multiple files. By default, one file is created for each day. For configuring multiple file writing frequency, see write_date_code_format.

- Values:
 - true Results are written to multiple files
 - false All results are written into a single file
- Default: false

Example

[Measurement]
write_average_results=true
write_flows=true
write_multiple_files=true

This settings has effect only when write_absolute_results, write_average_results, write_flow_results, and/or write_packet_results is set to true.

7.10. write_packet_results

When true, packet measurement results are written to file. The filename has the format "pk_info[suffix].txt", and new measurements are appended to the file.

- Values:
 - true Results are written to file
 - false Results are not written to file
- Default: false

Example

[Measurement]
write_packet_results=true

7.11. write_path

Set to override the path where measurement result files are stored. Use / as the directory separator.

- Type: string
- Default: Scopemon root directory

Example

[Measurement]
write_path=c:/temp

This settings has effect only when write_absolute_results, write_average_results, write_flow_results, and/or write_packet_results is set to true.

8. Glossary

Network Address Translation

A technique for remapping an IP address space

Wikipedia article on Network Address Translation

User Datagram Protocol

A simple, fast, and connectionless transport protocol.

Real-time Transport Protocol

A transport protocol for applications with real-time constraints, such as video streams, VoIP, and remote control.